Asymptotic behavior of nonoscillatory solutions of higher-order integro-dynamic equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Behavior of Nonoscillatory Solutions of Higher-order Integro-dynamic Equations

ASYMPTOTIC BEHAVIOR OF NONOSCILLATORY SOLUTIONS OF HIGHER-ORDER INTEGRO-DYNAMIC EQUATIONS Martin Bohner, Said Grace, and Nasrin Sultana Communicated by Alexander Domoshnitsky Abstract. In this paper, we establish some new criteria on the asymptotic behavior of nonoscillatory solutions of higher-order integro-dynamic equations on time scales.

متن کامل

Asymptotic Behavior of Solutions of Higher-Order Dynamic Equations on Time Scales

We investigate the asymptotic behavior of solutions of the following higher-order dynamic equation xΔ n t f t, x t , xΔ t , . . . , xΔ n−1 t 0, on an arbitrary time scale T, where the function f is defined on T × R. We give sufficient conditions under which every solution x of this equation satisfies one of the following conditions: 1 limt→∞x n−1 t 0; 2 there exist constants ai 0 ≤ i ≤ n − 1 wi...

متن کامل

Asymptotic behavior of second-order dynamic equations

We prove several growth theorems for second-order dynamic equations on time scales. These theorems contain as special cases results for second-order differential equations, difference equations, and q-difference equations. 2006 Elsevier Inc. All rights reserved.

متن کامل

Nonoscillatory Solutions to Forced Higher-order Nonlinear Neutral Dynamic Equations on Time Scales

By employing Kranoselskii’s fixed point theorem, we obtain sufficient conditions for the existence of nonoscillatory solutions of the forced higher-order nonlinear neutral dynamic equation [x(t) + p(t)x(τ(t))]∇ m + k ∑ i=1 pi(t)fi(x(τi(t))) = q(t) on a time scale, where pi(t), fi(t) and q(t) may be oscillatory. Then we establish sufficient and necessary conditions for the existence of nonoscill...

متن کامل

Nonoscillatory Solutions for Higher-Order Neutral Dynamic Equations on Time Scales

and Applied Analysis 3 where m ∈ N, α is the quotient of odd positive integers, t0 ∈ T, the time scale interval t0,∞ T {t ∈ T : t ≥ t0}, a ∈ Crd t0,∞ T, 0,∞ , p ∈ C t0,∞ T,R , τ, δ ∈ C T,T with limt→∞τ t limt→∞δ t ∞ and f ∈ C t0,∞ T×R,R satisfying the following conditions: i uf t, u > 0 for any t ∈ t0,∞ T and u/ 0. ii f t, u is nondecreasing in u for any t ∈ t0,∞ T. Since we are interested in t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Opuscula Mathematica

سال: 2014

ISSN: 1232-9274

DOI: 10.7494/opmath.2014.34.1.5